Analysis of NADPH supply during xylitol production by engineered Escherichia coli.

نویسندگان

  • Jonathan W Chin
  • Reza Khankal
  • Caroline A Monroe
  • Costas D Maranas
  • Patrick C Cirino
چکیده

Escherichia coli strain PC09 (DeltaxylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167-1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (Y(RPG)) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose)(-1), respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose)(-1), while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose)(-1), respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.

Anaerobic glucose oxidation was coupled to xylose reduction in a nonfermentative Escherichia coli strain expressing NADPH-dependent xylose reductase. Xylitol production serves as the primary means of NAD(P)(+) regeneration, as glucose is converted primarily to acetate and CO(2). The membrane-bound transhydrogenase PntAB is required to achieve the maximum theoretical yield of four moles of xylit...

متن کامل

Enhancement of Xylitol Production Rate with the EMP Pathway Engineered Candida tropicalis

NADPH regeneration is a limiting factor in reduction of xylose to xylitol in C. tropicalis. The oxidative PPP is the major source of NADPH biosynthesis in yeast. To enhance metabolic flux through PPP for promotion of NADPH regeneration. Genes involoved in EMP pathway were engineered by sequencial disruption and over-expression. For this, several genes involves in EMP pathway and promoters were ...

متن کامل

Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.

An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield, has been created by introducing a new bioconversion pathway into the cells. This pathway consists of three enzymes: L-arabinose isomerase (which converts L-arabinose to L-ribulose), D-psicose 3-epimerase (which converts L-ribulose to L-xylulose), and L-xylulose reductase (which converts L-xyl...

متن کامل

Metabolic engineering for improved fermentation of pentoses by yeasts

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...

متن کامل

Equilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli

Background: Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods: In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2009